索引一些好的RAG内容
并分享给大家一些我付费买的干货内容供大家学习
如果没有看过,移步:【AI+知识库】商业化问答场景,让AI回复更准确,一篇专为所有“小白”讲透RAG的实例教程(上篇)
现在再来看这四个阶段,
④、大模型生成回答
那么想要一个更加符合预期的生成结果,本质上是对这四个阶段的一步步优化。
1、数据预处理
和我们进行关键词检索类似(但是这里是向量检索,前文已有介绍,只是举例),当要检索的文档,标题整理的越丰富、关键词越精准,内容越丰富的时候。我们去搜索才更方便的查找。
如果一个将如何减肥的文章内容,标题写的却是《十年规划》,那么就算是人类自己也很难精准检索到。那么当进行向量检索时,系统执行路径也是通过索引来进行查找的,错误的信息标注,就会导致检索效率的下降,因此数据预处理的重要性不言而喻了。
2、如何操作
(一)、问答类型
(二)、文档类型
2.1 文档命名规范
2.2 文档内容标题规整:
一/二级标题规整:
-
标题名应控制在5-8字左右,使用简洁明了的词语或短语来命名。 -
文档避免使用无意义的数字、符号或缩写。
2.3、段落内容规则
(三)、图片类型
目前大模型不能直接使用图片输出和输入,其中要进过一道处理,但是作为小白可以先不管,此处了解。后续深入学习即可。
在文档的处理阶段还有诸多细节,我会将此在最后索引出来,供大家深入学习。
1、问题检索阶段:
因此我会拿FastGPT的“问题优化”举例,教你来做一个文本优化的功能。而重排、语义等模式,大可直接开启或关闭自行体验谁的效果更好,其他的功能点大家可像以下方式一样进行探索。
什么是问题优化,举个例子,在某些业务场景下用户通常讲不出术语,而知识库中的资料多数都是行业知识。如果用户使用通俗的语言表述,但是知识库中多数是行业术语的表述,就会导致,用户问题在知识库中的召回准确率极低。
因此,我们需要对问题进行优化,在用户无感知的情况下,提高问题去检索的准确性。
2、如何进行问题优化:
在对话背景描述中,描述当前的对话背景,AI会根据当前的对话背景把用户的问题优化一遍。
当我未填入任何背景信息时,我问:“鸡爪怎么做”
那么去检索时就是直接检索,鸡爪怎么做,而AI也会回复鸡爪的做法。
但是如果我在背景信息中填入对话背景,告诉他这是一个舞蹈动作。
那么你的问题就会被优化成:
那自然而然,知识库回去搜索这个舞蹈相关的内容,最终AI会告诉你,如何完成鸡爪这一舞蹈动作,甚至帮你找到演示鸡爪舞蹈动作的视频链接。
额……学会了
1、模型能力。
2、Prompt工程
Prompt工程有非常多的教学和案例了,相信大家都会见到过。如果是小白,我十分建议从结构化的提示词学起,而结构化的提示词,推荐你直接使用各个模型平台厂商提供的提示词模版用起。
我这里帮你整理了几个,学习仿写即可。
Coze官方文档推荐:
# Character <Bot 人设>
你是一位数据分析专家,擅长使用 analyze 工具进行数据分析,包括提取、处理、分析和解释数据,你还能以通俗易懂的语言解释数据特性和复杂的分析结果。
## Skills <Bot 的功能>
### Skill 1: 提取数据
1. 当用户提供一个数据源或者需要你从某个数据源提取数据时,使用 analyze 工具的 extract 数据功能。
2. 如果用户提供的数据源无法直接提取,需要使用特定的编程语言,如 Python 或 R,写脚本提取数据。
### Skill 2: 处理数据
1. 使用 analyze 工具的 data cleaning 功能进行数据清洗,包括处理缺失值、异常值和重复值等。
2. 通过数据转换、数据规范化等方式对数据进行预处理,使数据适合进一步的分析。
### Skill 3: 分析数据
1. 根据用户需要,使用 analyze 工具进行描述性统计分析、关联性分析或预测性分析等。
2. 通过数据可视化方法,如柱状图、散点图、箱线图等,辅助展示分析结果。
## Constraints <Bot 约束>
– 只讨论与数据分析有关的内容,拒绝回答与数据分析无关的话题。
– 所输出的内容必须按照给定的格式进行组织,不能偏离框架要求。
– 对于分析结果,需要详细解释其含义,不能仅仅给出数字或图表。
– 在使用特定编程语言提取数据时,必须解释所使用的逻辑和方法,不能仅仅给出代码。
文心一言官方文档推荐:
当然最好还是WaytoAGI知识库,我的推荐:
这一步要评估的是,你所选用模型,是否有足够的逻辑推理能力、指令遵循度等标准。如果模型本身的能力不足,前边的优化在此处也会导致输出较差。
而关于此处的评估细节更加专业和细化,通常小白玩家使用时,使用主流的大模型基本不会出错(不建议自己微调大模型)。
如果能够使用到以上指标和相关方法时,相信大家已经有了自行搜索和学习的能力。
以下是过程中会涉及到的一些优化细节,文档我会分享出来,在需要时大家根据术语去检索关键资料即可:
来源:Equity AI