1. 电商知识图谱概览
2. 电商知识图谱构建
3. 电商知识图谱应用
4. 知识图谱与大模型探索
5. 问答环节
内容校对|李瑶
出品社区|DataFun
电商知识图谱概览
-
首先,买家和卖家的表达习惯不同,如何高效地匹配买家的购买意图与卖家的商品信息,促成交易转化? -
其次,不同卖家间存在语言表达习惯差异,例如新手和成熟卖家的区别,本地卖家和跨境卖家的区别等,如何统一管理平台上的商品,消除差异化? -
另外,对于跨境电商平台,比如 Shopee,面临着跨越不同市场和语言的挑战,如何对齐不同市场的商品,实现高效管理?
电商知识图谱构建
-
首先是信息多元。信息来自多个来源,包括买家和卖家等。在某些情况下,商品本身的信息可能不完整,但我们可以从买家的评论中提取出有效的补充信息,以弥补这些缺失。另外,信息的表达方式也是多样的。例如,在上图的例子中,“ready stock”这个词是东南亚市场经常使用的表达方式,但在其他市场可能并不适用,比如拉美市场。 -
第二是质量参差不齐。比如,在这个例子中,卖家在标题中输入的品牌信息“Sumsung”实际上是错误的。这种拼写错误、信息错误、冗余或缺失在电商平台上非常常见。 -
第三是依赖领域知识。对于某些品类的商品,需要依赖领域知识来判断其准确性。例如,在摩托车这个品类中,“50CC”对于不太了解该领域的人来说并不明确,他们可能无法确定它指的是某个型号还是排量。因此,需要领域信息来帮助我们进行验证。 -
最后是数据量大。以 Shopee 为例,我们拥有数十亿种商品,涵盖了 8 个市场,使用了 6 种语言。如何将如此庞大的信息融合构建成一个统一的知识图谱,是一个巨大的挑战。
-
第一层是基础定义层,包括一些基础的元素,如类别和属性。类别又分为多个层级,从 L1 到 L5,属性也包括关键属性和销售属性,这些都与实际业务场景密切相关。 -
在基础定义层的基础上,我们可以根据这些基础元素进行排列组合,形成组合定义层,例如场景、标签、标品等。对于像春日露营这样的场景,通常我们会跨越多个类目进行组合。对于“户外防水装备”这个标签,则户外运动类别商品具备防水属性才符合要求。对于标品,定义会相对严格,需要完全符合一些类目或属性的定义,才能称之为同一个标品。
电商知识图谱应用
知识图谱与大模型探索
问答环节
来源:DataFunTalk